skip to main content


Search for: All records

Creators/Authors contains: "Galli, Giulia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We propose a quantum science platform utilizing the dipole-dipole coupling between donor-acceptor pairs (DAPs) in wide bandgap semiconductors to realize optically controllable, long-range interactions between defects in the solid state. We carry out calculations based on density functional theory (DFT) to investigate the electronic structure and interactions of DAPs formed by various substitutional point-defects in diamond and silicon carbide (SiC). We determine the most stable charge states and evaluate zero phonon lines using constrained DFT and compare our results with those of simple donor-acceptor pair (DAP) models. We show that polarization differences between ground and excited states lead to unusually large electric dipole moments for several DAPs in diamond and SiC. We predict photoluminescence spectra for selected substitutional atoms and show that while B-N pairs in diamond are challenging to control due to their large electron-phonon coupling, DAPs in SiC, especially Al-N pairs, are suitable candidates to realize long-range optically controllable interactions.

     
    more » « less
  2. Robust spin-photon interfaces in solids are essential components in quantum networking and sensing technologies. Ideally, these interfaces combine a long-lived spin memory, coherent optical transitions, fast and high-fidelity spin manipulation, and straightforward device integration and scaling. The tin-vacancy center (SnV) in diamond is a promising spin-photon interface with desirable optical and spin properties at 1.7 K. However, the SnV spin lacks efficient microwave control, and its spin coherence degrades with higher temperature. In this work, we introduce a new platform that overcomes these challenges—SnV centers in uniformly strained thin diamond membranes. The controlled generation of crystal strain introduces orbital mixing that allows microwave control of the spin state with 99.36(9)% gate fidelity and spin coherence protection beyond a millisecond. Moreover, the presence of crystal strain suppresses temperature-dependent dephasing processes, leading to a considerable improvement of the coherence time up to 223(10) μs at 4 K, a widely accessible temperature in common cryogenic systems. Critically, the coherence of optical transitions is unaffected by the elevated temperature, exhibiting nearly lifetime-limited optical linewidths. Combined with the compatibility of diamond membranes with device integration, the demonstrated platform is an ideal spin-photon interface for future quantum technologies. 
    more » « less
    Free, publicly-accessible full text available November 1, 2024
  3. Silicon (Si) is broadly used in electrochemical and photoelectrochemical devices, where the capacitive and Faradaic reactions at the Si/water interfaces are critical for signal transduction or noise generation. However, probing the electrified Si/water interface at the microscopic level remains a challenging task. Here we focus on hydrogenated Si surfaces in contact with water, relevant to transient electronics and photoelectrochemical modulation of biological cells and tissues. We show that by carrying out first-principles molecular dynamics simulations of the Si(100)/water interface in the presence of an electric field we can realistically correlate the computed flat-band potential and tunneling current images at the interface with experimentally measured capacitive and Faradaic currents. Specifically, we validate our simulations in the presence of bias by performing pulsed chronoamperometry measurements on Si wafers in solution. Consistent with prior experiments, our measurements and simulations indicate the presence of voltage-dependent capacitive currents at the interface. We also find that Faradaic currents are weakly dependent on the applied bias, which we relate to surface defects present in newly prepared samples.

     
    more » « less
  4. null (Ed.)